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Abstract The retrieval of detailed, co‐located snow depth and canopy cover information from airborne
lidar has advanced our understanding of links between forest snow distribution and canopy structure. In
this study, we present two recent high‐resolution (1 m) lidar data sets acquired in (i) a 2017 mission in the
Eastern Swiss Alps and (ii) NASA's 2017 SnowEx field campaign at Grand Mesa, Colorado. Validation of
derived snow depth maps against extensive manual measurements revealed a RMSE of 6 and 3 cm for
plot‐level mean and standard deviation of snow depth, respectively, demonstrating that within‐stand snow
distribution patterns were captured reliably. Lidar data were further processed to obtain canopy structure
metrics. To this end, we developed a novel approach involving a continuous measure of local distance to
canopy edge (DCE), which enabled creating spatially aggregated nondirectional and directional descriptors
of the canopy structure. DCE‐based canopy metrics were correlated to mean and standard deviation of snow
depth over areas representing grid‐cell sizes typical of watershed and regional model applications
(20–200 m). Snow depth increased along the DCE gradient from dense canopy to the center of canopy gaps
for all sites and acquisition times, while directional effects particularly evolved during the ablation season.
These findings highlight the control of canopy gap distribution on snow distribution in discontinuous
forests, with higher snow depths where the open fraction is concentrated in few large gaps rather than many
fragmented small gaps. In these environments, dedicated canopy structure metrics such as DCE should
advance spatially distributed snow modeling.

1. Introduction

In forested areas, snow distribution dynamics are shaped by complex interacting processes such as snow
interception (Moeser, Stähli, et al., 2016; Storck et al., 2002), shading from solar radiation (Musselman
et al., 2015) and enhanced longwave irradiance (Sicart et al., 2006; Webster et al., 2016), which create
pronounced variability at small spatial scales. The nonuniform snowpack develops into a fractional snow
cover in springtime, modulating magnitude and timing of streamflow and altering radiative and turbulent
energy fluxes between the land surface and the atmosphere (Liston, 1999). Understanding and quantifying
the control of forest architecture on snow distribution is important, as forests are subject to changes due to
clearcutting and timber harvesting (Ellis et al., 2013; Murray & Buttle, 2003; Troendle & King, 1987),
wildfires (Burles & Boon, 2011; Harpold, Biederman et al., 2014), and mortality caused by insect infestation
(Biederman et al., 2014; Winkler et al., 2014). These shifts affect snow cover dynamics and, given the large
spatial overlap of forests and seasonal snow, further impact hydrological regimes and the climate system
(Rutter et al., 2009).

The interplay of localized processes can be represented explicitly in high‐resolution (~1 m) models (Broxton
et al., 2015; Moeser, Mazzotti, et al., 2016) but constitutes a major challenge especially at coarser resolutions,
where current model deficiencies have been attributed to the simplified implementation of the canopy
(Broxton et al., 2015; Essery et al., 2009). While it is commonly treated as a homogeneous medium
characterized by bulk properties (Best et al., 2011; Bonan et al., 2018; Boone et al., 2017), in reality forests
consist of a mosaic of trees and canopy gaps. In applications that require a coarser resolution, variability
resulting from canopy‐induced processes needs to be treated at the subgrid level (Clark et al., 2011).
Existing approaches to represent within‐cell variability such as tiling (Andreadis et al., 2009; Bartlett
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et al., 2006) and probability distribution functions (Essery & Pomeroy, 2004; Liston, 2004; Luce & Tarboton,
2004) currently do not incorporate canopy metrics that reflect its true structural heterogeneity. They may
hence not accurately represent the canopy's influence on snow distribution within a forest stand.
However, forest snow processes are key drivers of subgrid variability at model scales ranging up to a few
hundreds of meters (Clark et al., 2011; Deems et al., 2006; Trujillo et al., 2007). It is therefore important to
identify canopy structure parameters that better describe forest snow processes and to integrate these in
the aforementioned coarse‐scale modeling approaches.

To date, efforts to test and improve coarse resolution forest snowmodels have been hampered by the limited
availability of spatially distributed, comprehensive high‐quality data sets (Essery et al., 2009; Jost et al.,
2007). Relating forest snow distribution to canopy characteristics has been the subject of a myriad of in situ
experimental studies, many of which are outlined in two extensive reviews (Clark et al., 2011; Varhola et al.,
2010). Despite the enormous effort associated with data collection, the ability to capture representative snow
depth patterns that accurately reflect grid‐cell averages and subgrid variability in forested environments has
suffered from the poor extent and limited support of these measurements (Bloeschl, 1999; Pomeroy et al.,
2002; Winkler & Moore, 2006). In contrast, validation efforts that use satellite products to evaluate large‐
scale land surface models have strong limitations in forested environments (Toure et al., 2018).
Consequently, identifying grid‐cell‐scale canopy structure metrics that can act as predictors of snow depth
averages and variability remains a major challenge (Friesen et al., 2015).

Differential airborne lidar (or Airborne Laser Scanning (ALS)) mapping offers an opportunity to overcome
the constraints mentioned above by providing spatial data of both snow distribution and canopy structure at
high resolution across previously unavailable extents. However, while the technology is advancing our
understanding of spatial snow cover dynamics (Deems et al., 2013; Harpold et al., 2015), forested environ-
ments pose major challenges to data acquisition due to the partial obstruction of the signal by trees
(Bhardwaj et al., 2016; Nolin, 2010). Therefore, lidar‐based studies concerned with forest snow have reported
considerable data gaps in subcanopy areas (Broxton et al., 2015; Currier & Lundquist, 2018; Zheng et al.,
2016). Existing validation studies have come to contrasting conclusions regarding the performance of lidar
in forests, reporting both equivalent (Currier et al., 2019; Hodgson et al., 2005; Reutebuch et al., 2003) and
decreased data quality (Hopkinson et al., 2004; Tinkham et al., 2014) compared to nonforested areas. The
diversity of these results is partially due to differences in lidar survey parameters, reflecting a trade‐off
between wide‐area and high‐resolution mapping (Deems et al., 2013). Accuracy has been also related to
parameters describing canopy and understory vegetation (Hopkinson et al., 2004; Tinkham et al., 2014),
and difficulties in acquiring accurately geolocated validation data within forest stands have been highlighted
(Hopkinson et al., 2012). Whether ALS‐based snow depth maps realistically represent forest snow patterns
still needs to be assessed (Currier et al., 2019; Harpold, Gou et al., 2014).

In this study, we explore the links between snow depth and canopy structure within forest stands based on
recent high‐resolution (1 m) airborne lidar data sets from the Swiss Alps and Grand Mesa in Colorado with
the following specific objectives:

1. Use new, comprehensive validation data to demonstrate the capability of airborne lidar to reliably cap-
ture within‐forest snow distribution patterns;

2. Introduce a novel and computationally efficient approach that characterizes the spatial layout of the
canopy using nondirectional or directional local measures of DCE;

3. Apply the DCE approach to create spatially aggregated canopy structure descriptors;
4. Identify relationships between snow and canopy distribution, both at the pixel level (1 m) and across a

range of spatial scales (20–200 m).

2. Study Areas and Data
2.1. Eastern Swiss Alps

The core data set of this study encompasses two forested study areas in the Grisons region in Switzerland,
one on Wolfgang Pass near the town of Davos and the other in the central Engadine valley (Figures 1a,
1d, and 1e). Each site constitutes an area of approximately 0.5 km2 within the flight perimeter of a pilot mis-
sion from NASA's Airborne Snow Observatory (ASO; Painter et al., 2016) in the Eastern Swiss Alps. The two
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sites, located at approximately 46.6–46.8° latitude and 1,700 and 2,000 m above sea level, respectively,
experience distinctly different weather patterns (e.g., precipitation events) and are therefore treated
separately. The locations were selected based on their accessibility, the relatively flat slope, and species
composition representative of typical alpine conifer forests. While the Davos forest includes mainly
Norwegian spruce (Picea abies) and pine (Pinus sylvestris), the Engadine site features mostly spruce and
larches (Larix decidua). Within‐site topographic variability, understory growth and ground roughness are
limited in the Engadine site but are more pronounced in the Davos forest.

Snow‐on ALS data were acquired on three days during the 2017 ablation season (20 March, 31 March, 17
May), the snow‐off flight occurred on 29 August of the same year. The target area was covered by overlap-
ping flight stripes at a flight altitude of 4,000 m above sea level, leading to high point densities between 5
and 30 points/m2 in the areas of interest. The setup included a Riegl Q‐1560 ALS scanning at a 800‐kHz pulse
rate with a 60° scan angle, which corresponds to ASO's operational configuration (Painter et al., 2016).
Flights started after the onset of snowmelt; by 17 May most of the forested areas were snow free.

Manual validation measurements were collected after the two flights in March within 24 hr of the ALS
acquisition. Validation plots comprised manual snow probing along eight transects centered around a geo-
located tree, designed to capture spatial snow patterns (Figure 1b). Accurate manual georeferencing of the
measurements was ensured by selecting center trees that could be identified unequivocally on an aerial
image and an existing lidar‐based canopy height model, allowing a geolocation accuracy within 1 m.
Measurements were taken with 1‐m spacing and additionally at each side of the transect every 2 m, on
10‐m transects in cardinal and 6‐m transects in ordinal directions, resulting in 132 measurements per plot
on a 20‐m2 area. Overall, we surveyed 54 plots at both sites during the 20 March flight (Figures 1d and
1e). As most of the snowpack was depleted in the Engadine by 31March, validationmeasurements were lim-
ited to the Davos area but were more widespread and included 28 additional plots (Figure 1e). These efforts
generated a validation data set consisting of more than 11,000 manual measurements.

2.2. Grand Mesa, Colorado

We complement the Swiss data set with ALS data acquired by ASO during NASA's 2017 SnowEx campaign
(Kim et al., 2017) on Grand Mesa, CO, at about 3,200 m above sea level (Figures 1a and 1c), deploying the

Figure 1. (a) Locations of the American and Swiss study areas. (b) Design of validation plots surveyed within the Swiss forest sites. Aerial image and perimeter of (c)
the Grand Mesa sites, (d) the Engadine field area, and (e) the Davos area, both including the location of validation plots.
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same instrumentation but flying at lower altitude (approximately 1,500 above terrain). This allows our
analysis to be transferred to a continental, lower latitude (39.0°) site. We selected areas within a
discontinuous forest stand with an equivalent extent to the Swiss sites (0.5 km2 in total), but with
substantially flatter topography, less ground roughness, and less understory vegetation. In contrast to the
ablation period observed at the Swiss sites, the Grand Mesa data set was collected during the
accumulation period and captured a precipitation event of about 15 cm between snow‐on flights on 8 and
16 February. Snow depths were 1.5 m on average, in contrast to the 0.5‐m mean snow depth in the Swiss
data set. The snow‐off flight occurred on 26 September 2016. In situ data from Grand Mesa are not
considered in this study, but have been compared to the same ALS data sets by Currier et al. (2019).

3. Methods
3.1. Snow Depth Data Processing

Point clouds generated from the full waveform data by standard ASO procedures (Painter et al., 2016) were
further processed primarily using lastools software (http://rapidlasso.com/lastools/), applying the workflow
illustrated in Figure 2. Following Currier et al. (2019), ground points were classified with the lasground tool,
using a step size of 2m and considering last returns only. Ground‐classified points were then filtered to include
only the lowest 40th percentile of points within each 1‐m bounding box, aiming at excluding low‐vegetation
points wrongly classified as ground. To arrive at a gap‐free digital elevation model, these ground points were
first gridded using the lasgrid tool, and further converted to a triangulated irregular network (TIN, las2dem
tool). The TINwas then used to fill the gaps in the gridded digital elevation model where ground returns could
not be retrieved. Snow depth (HS)maps at 1‐m resolution were created by digital elevationmodel differencing,
accounting for offsets determined from snow‐free areas and restricting the value range to 0–3 m to exclude
(rare) obvious outliers that may occur around trees (Figure 2a). Further differencing of the snow depth maps
yielded the change in snow depth between the two flights, differential snow depth (dHS; Figure 2b).

3.2. Canopy Structure Metrics and DCE Algorithm

A series of canopy structure descriptors were retrieved from the snow‐off scans. Canopy height models at 1‐
m resolution (Figure 2c) were created following the workflow presented by Khosravipour et al. (2014). A

Figure 2. Processing workflow to convert the point cloud data sets (yellow boxes) to 1‐m grids (red boxes) and aggregated data sets (purple box), comprising snow
data (blue frame) and canopy data (green frame) processing branches. Snow data processing resulted in (a) snow depth and (b) differential snow depth grids.
Canopy data processing yielded a (c) canopy height model which was (d) binarized and processed further to compute (e) a nondirectional and (f) a directional
canopy classification (DCE‐algorithm; cf. section 4.2). The examples of the gridded data sets represent a 70 × 70‐m area.
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binary canopy mask was derived from the canopy height models to discriminate between (under‐) canopy
and open (outside‐canopy) pixels based on a 2‐m height threshold (Figure 2d), which is consistent with
recent literature (Broxton et al., 2015; Currier & Lundquist, 2018; Tennant et al., 2017).

A novel algorithm was developed to characterize canopy distribution. In essence, our approach includes an
edge‐detection routine run on the binary canopy map, where the pixels adjacent to the canopy edge are
tagged and the process iterated to detect cells a step further away from the canopy edge. The resulting aggre-
gated map values indicate each pixel's distance from the canopy edge (DCE), a metric which is further used
to define five classes representing different regions within the forest stand (Figure 2e and Table 1). A sche-
matic of the algorithm is shown in Figure 3. The binary canopy raster, where B = 1 indicates canopy and B =
0 indicates open, is smoothed by applying a symmetric two‐dimensional moving average filter with a 3 × 3‐m
window. The smoothed grid serves to identify pixels at the transition from canopy to open pixels (i.e., where
0 < S < 1). Overlaying the original binary grid with the smoothed grid allows further distinguishing between
transition pixels under canopy and transition pixels in the open. In an overlay grid X, defined as Xo =max(B,
S), all pixels with 0 < Xo < 1 correspond to transition pixels in the open, while in an overlay grid defined as
Xc = min(B,S), pixels with 0 < Xc < 1 correspond to transition pixels under canopy. These transition pixels
are assigned a DCE value of 1 (open) and ‐1 (canopy) respectively.

The two overlay grids are binarized applying Xo (Xo > 0) = 1 in the former and Xc (Xc < 1) = 0 in the latter
case, to provide the starting points of the next smoothing iteration. From this point onward, two separate
iterative loops identify pixels gradually moving away from the original canopy edge: outward in the case
of open pixels (red loop in Figure 3) and inward in case of below‐canopy pixels (blue loop). The DCE value
corresponding to the iteration number N is assigned to pixels delineated at each step, with positive values for
open pixels and negative values for below‐canopy pixels. Ultimately, the resulting DCE score reflects a
signed two‐dimensional distance from the canopy edge. Further information, including the algorithm code,
is provided in the supporting information.

Pixels were also classified based on their DCE. The DCE thresholds defining the classes, reported in Table 1,
were motivated by results presented in section 5.2. As these classes are based on location relative to the
canopy edge, they can be thought of as large (D1) and small (D2) gaps, the canopy edge region (D3), small
(D4) and large (D5) canopy clusters (Figure 2e and Table 1).

A similar approach based on the same concept was further implemented to derive an alternative pixel clas-
sification, which additionally accounts for edge orientation. In this case, asymmetric two‐dimensional
forward‐moving average filters pointing southward and northward, respectively, were applied separately
to the binary canopy mask, to derive distance to the south and north exposed canopy edge. This allowed pix-
els to be classified into open and canopy pixels, south facing and north facing edges (Figure 2f). Note that
some pixels fulfilled the criteria for both north and south facing canopy edges; these were tagged as overlap-
ping edges (Table 1). An application example of the directional DCE algorithm illustrating the first three
iteration steps is included in Text S1 and Figure S2 in the supporting information.

3.3. Validation of ALS‐Based Snow Maps

Individual manual measurements around each intersection point (of main transects and lateral measure-
ments; see Figure 1b and column “Manual HS measurements” in Figure 5) were aggregated to obtain 32

Table 1
Overview of Pixel Classifications

Pixel classifications Data basis Category denomination Category definition

Binary Canopy height model (CHM) Canopy (C) CH > 2
Open (O) CH ≤ 2

Nondirectional DCE classes DCE grid Large gaps (D1) 3 < DCE ≤ 8
Small gaps (D2) 1 < DCE ≤ 3
Edges (D3) −1 ≤ DCE ≤ 1
Small clusters (D4) −3 ≤ DCE < −1
Large clusters (D5) DCE < −3

Directional DCE classes South and north facing DCE grids South exposed edge (S) −3 ≤ south DCE ≤ 3
North exposed edge (N) −3 ≤ north DCE ≤ 3

Refer to Table S1 in the supporting information for further details on the directional distance to canopy edge (DCE)
classes not shown in this table. (Thresholds Indicated in Meters).
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validation points per plot. This was achieved by averaging the measurement at the intersection point and the
four measurements surrounding it, where the intersection point was attributed double weight in the
aggregation procedure. This strategy served to mimic the ALS sampling density, with each validation
point representing a 1‐m pixel. Validation points were matched to the nearest grid cell of the ALS‐based
snow depth map and classified into open outside‐canopy (O) and under‐canopy (C) locations. Snow depth
averages and standard deviations were further computed at each plot, to allow a validation of aggregated

Figure 3. Conceptual schematic of the algorithm applied to derive the DCE grid, including two iterative edge‐detection
loops used to compute the DCE of open (red loop) and canopy (blue loop) pixels. Each iteration starts with a binary
canopymask B (1), which is smoothed applying a 3 × 3‐mmoving average filter (grid S, 2). Combining B and S into overlay
grids X (3) delineates open (red loop) and canopy pixels (blue loop) with a DCE corresponding to the iteration number N
(4), and creates the binary input to the subsequent iteration step (5). Figure S1 in the supporting information visualizes the
first three iteration steps of each loop.
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snow depth descriptors relevant to our subsequent analysis. The match between ALS data and manual
measurements was quantified in terms of root‐mean‐square deviation (RMSD), mean absolute deviation,
and mean bias. To further verify the robustness of our results, we computed an additional HS map using
the 17 May flight as the snow‐off reference and repeated the evaluation. Validation plot locations were
known to be snow free at this date based on local inspection.

Note that we do not offer a validation of the Grand Mesa data set, because it was separately evaluated in a
concurrent study by Currier et al. (2019). Based on their results and the fact that the Grand Mesa data set
was acquired with the same lidar setup and processed to the same standards, we assume this data set to
be of very similar accuracy.

3.4. Data Aggregation to the Grid‐Cell Level

ALS data were aggregated to grid cells with sizes spanning 1 order of magnitude, ranging from the size of our
validation plots to typical resolutions of watershed‐ and regional‐scale models (20, 50, 100, 200 m). A 50%
overlap between neighboring grid cells was allowed in the aggregation procedure to optimize sample size.
In the following, we use the term “pixel” to describe the 1‐m units of the original gridded data sets, while
the term “grid cell” is used to reference aggregated pixels.

The set of variables (Table 2) include grid‐cell average quantities and subgrid variability metrics relating to
both snow and canopy properties. These were derived from one or several 1‐m resolution data sets presented
in sections 4.1 and 3.3. Continuous variables (i.e., snow depth and DCE) were aggregated to averages and
standard deviations. Class fractions of the various canopy categories were computed for each grid cell to
characterize the arrangement of canopy elements within it, and snow depth averages specific to each canopy
category were calculated. For instance, DxF (e.g., D1F) is the fraction of pixels in a grid cell classified as Dx
(e.g., D1), and HSDx (e.g., HSD4) the snow depth average of all pixels in a grid cell classified as Dx (e.g., D4).

Moreover, we defined three additional variables to characterize canopy density, the gap space, and overall
canopy distribution within each grid cell. The average canopy height over the canopy pixels within each grid
cell (CHCF) is used as a proxy for vertical canopy density. In analogy, mean‐squared distance to the canopy
edge (SDCEOF) serves to characterize gap area, and is calculated as the average of the squared DCE of open
pixels within each grid cell. The overall canopy distribution is quantified by the standard deviation of DCE
(STDDCE), where a large STDDCE implies that the grid cell contains areas of both dense canopy and larger
gaps, while a small STDDCE indicates the prevalence of one specific canopy class.

4. Results
4.1. Validation of ALS‐Derived Snow Depth From the Swiss Data Set

Manually measured and ALS‐based snow depths averaged over validation plots matched well between the
two data sets (Bias: −4–0 cm, RMSD: 4–8 cm), and results were consistent even when using different sum-
mer scans as reference (Figure 4a versus 4b). Also, plot‐scale standard deviations of snow depth conformed
well with their respective validation data (Bias: 0–2 cm, RMSD: 2–3 cm), demonstrating that ALS accurately
captured both the average conditions and the snow depth variability. Note, however, that snow depths
derived from the first snow‐on flight appeared to have a slightly larger bias than those derived from the sec-
ond flight. This may be related to the limited number of snow‐free pixels during the first flight, which are

Table 2
Variables Aggregated to the Grid‐Cell Level, With Associated Acronyms and Data Basis

Aggregated variable Abbreviation Data basis

Canopy and open fractions CF, OF Binary canopy mask
Class fractions based on distance to canopy edge (DCE) D1F, D2F, D3F, D4F, D5F DCE grid
Mean canopy height within canopy fraction CHCF CHM, binary canopy mask
Mean‐squared distance to canopy edge within open fraction SDCEOF DCE grid, binary canopy mask
Standard deviation of DCE STDDCE DCE grid
Mean snow depth HS HS grid
Mean snow depth within each DCE class HSD1, HSD2, HSD3, HSD4, HSD5 HS grid, DCE‐based classification
Standard deviation of snow depth STDHS HS grid
Snow‐cover fraction SCF HS grid
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routinely used to better register the snow‐on and snow‐off data to each other. Interestingly, high‐resolution
gridding was necessary to achieve the standard deviation observed from the manual measurements. An
initial comparison to a 3‐m resolution product derived by the standard ASO workflow (Painter et al.,
2016) revealed consistently lower standard deviations than those computed from the 1‐m HS map (cf.
Text S2 in the supporting information).

At the pixel level (i.e., comparing individual manual validation points to ALS data at the 1‐m scale), empiri-
cal distributions of snow depths computed over all validation plots were well reproduced by the ALS data
(Figure 4, right). This applies to both under‐canopy and outside‐canopy regions, indicating that where
ground returns could be identified, the data quality of canopy pixels was only slightly worse than that of
open pixels (RMSD of 17–19 versus 10–13 cm, but equal bias of −5–0 cm). Detailed error statistics are avail-
able from Table S2 in the supporting information.

Snow depth patterns around trees varied greatly at our validation plots (20 × 20 m). Therefore, a qualitative
comparison of different spatial patterns observed across the plots served to explore whether ALS succeeded
in capturing this diversity. Figure 5 shows validation plots with a tree well (a), strong snow depth gradients
(b), a rather homogeneous snow distribution (c), and partial snow cover (d). Overall, patterns captured by
manual measurements were well reproduced by the ALS‐based data sets, despite occasional discrepancies
existing at individual points (cf. difference plots in Figure 5).

4.2. Relationships Between Snow Depth Distribution and Canopy Structure at the Pixel Level

Across each field area (Davos, Grand Mesa, Engadine), grouping pixels based on their DCE revealed a dis-
tinct relationship between snow distribution and pixel location relative to the surrounding canopy elements
(Figure 6a). On average, lidar‐based snow depths observed in under‐canopy pixels were shallower and
roughly constant for DCE < −5 m (i.e., within large canopy clusters). A pronounced increase in snow depth
occurred over the transition from under‐canopy to open (−5m<DCE< 5m) at all sites. For DCE> 5m (i.e.,
further away from the canopy edge) snow depths approached a maximum (Grand Mesa) or a value close to
themaximum (Swiss sites). Differential snow depth (Figure 6b) matched this trend in GrandMesa, reflecting
accumulation patterns from a snowfall between the two flights. Contrary, at the Swiss sites differential snow
depth suggested highest depletion rates at outside‐forest pixels, while these rates decreased as canopy
density increased.

Figure 4. Comparison between (left) plot‐scale snow depthmean and (middle) standard deviation fromALS‐derived (1‐m resolution) andmanually surveyed snow
depth. The right panels further show pixel‐scale distributions of ALS‐based (dashed lines) and in situ measured (full lines) snow depth, distinguishing canopy and
open pixels. Data are shown for the flights on 20 and 31 March, using (a) the 17 May and (b) the 29 August reference snow‐off scans.
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The consistent average behavior of snow depth around the canopy edge across sites and flight dates moti-
vated DCE thresholds which we used to assign within‐forest pixels to our five DCE‐based classes (
section 4.3 and Table 1). To this end, the thresholds were set to resolve the snow depth gradient around
the canopy edge. Snow depth distributions within each DCE class are shown in Figure S5 in the supporting
information. The upper limit of the “large gaps” class defined as 8 m away from the canopy implies that gaps
with diameters of up to 16 m (i.e., on the order of one canopy height) fall within this class. This is in line with
the 16‐m scale break in snow depth distribution observed by Deems et al. (2006) and used by Broxton et al.
(2015) to identify near‐canopy pixels, and includes the majority of open pixels within the forest stand.

Empirical distributions of both absolute and differential snow depth in directional DCE classes disclose spa-
tial snow cover dynamics within semiclosed forest (Figure 7). Both the Engadine and the Grand Mesa sites
are reasonably flat, so snow distribution patterns evolve independent of local topographic or orographic
effects. At the Engadine site, snow distribution at the onset of snowmelt (flight 1) is nearly identical on
the north and south sides of the canopy edge (Figure 7a, left). But in line with data presented in Figure 6,
considerable differences exist between the amount of snow under canopy and just outside the canopy. To
the contrary, depletion rates feature reverse distribution characteristics. The south facing classes show
higher depletion rates than the north facing classes, while differences in depletion rates just within and out-
side the canopy edge are minor for both orientations (Figure 7b, left). A spatial representation of this beha-
vior (Figure 8) illustrates high depletion rates along exposed south facing canopy edges. Also, at GrandMesa
systematic differences exist in the distribution of snow across the forest edge (Figure 7a, right). The snowfall

Figure 5. Spatial patterns at four different plots, featuring (a) a tree well, (b) a strong snow depth (HS) gradient, (c) a more homogeneous snow distirbution, and (d)
partial snow cover. Each panel shows a 25 × 25‐m area. Note that yellow in columns 2 to 4 represents 0 snow depth or no snow.
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event captured between the two flights entails expected accumulation differences, with systematically less
accumulation on the ground inside the canopy, while differences between directional classes are
negligible (Figure 7b, right).

4.3. Relationships Between Snow Depth Distribution and Canopy Structure at the Grid‐Cell Level

When aggregated over grid‐cell domains, snow depth was stratified with DCE (Figure 9a). To demonstrate
this, we determined mean snow depth within each of the five DCE classes separately (Table 2). Every single

Figure 6. Relationships between (left) DCE and mean HS and (right) mean dHS over all pixels, background colors show-
ing the DCE classes defined.

Figure 7. Empirical distributions of (a) snow depth (HS) from flight 1 and (b) differential snow depth between the two
flights at the Engadine (left) and the Grand Mesa (right) sites, representing ablation and accumulation seasons, respec-
tively. Histograms are specific to north and south facing edges, further discriminating between open and canopy pixels (cf.
classifications in Table 1).
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grid cell featured a remarkably consistent trend across DCE classes (Figure 9b), with less snow under dense
canopy and more snow toward larger gaps. This effect was also consistent across all sites and all grid‐cell
sizes (Figure 9b). Yet individual grid cells show variable snow depths per DCE class. Not surprisingly, this
variability impacts the overall mean snow depth per grid cell (cf. color scale in Figure 9a), such that indivi-
dual grid cells with more snow per DCE class also feature an overall higher mean snow depth. The distribu-
tion of canopy classes across the grid cells was not able to explain the variability of snow depths per DCE
class (data not shown), which suggests that other external factors, such as local precipitation gradients across
the study area and/or topographic conditions, govern the overall snow input to the grid cell.

To remove possible influences of the above‐mentioned external factors, we normalized each grid cell's mean
snow depth (HS) by subtracting the mean snow depth of the center DCE class (HSD3F). Normalized grid‐cell
average snow depth (nHS) exhibited a strong correlation to open fraction (OF) quantified by Pearson's R
(Table 3), at all sites, for all flights, and all grid‐cell resolutions, with the exception of large grid‐cell resolu-
tions (100–200 m) for the first flight in Davos. We found similar correlation statistics between nHS and
mean‐squared distance to the canopy edge (SDCEOF), while correlations between nHS and mean canopy
height (CHCF) were comparably smaller and only strong for the Engadine site and large grid‐cell resolutions.

Figure 8. (left) Snow depth distribution from the first flight and (right) differential snow depth (20–31 March; i.e., melt period) together with the (middle) location
of the canopy on a 100 × 120‐m area in the Engadine. The arrows point at areas featuring particularly high depletion rates, located to the south of canopy edges.

Figure 9. (a) Mean snow depth of each DCE class (HSDx, x = 1, … , 5) within 100‐m grid cells for the flight on 20 March in
Davos, where each line represents one grid cell connecting the associated HSDx values. The color scale shows the mean
overall snow depth for each 100‐m grid cell (HS). (b) Scatterplots between class‐specific snow depth averages (edge class
versus large gap class (o) and large cluster class (x), respectively), for the first flight at all sites and within grid cells of
different resolutions (denoted by shading; light to dark: 50, 100, 200 m).
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The combined effect of open fraction and gap distribution characteristics is further illustrated in Figure 10.
While the data confirm the strong correlation between nHS and the open fraction, the distribution of DCE
classes within each grid cell also affects mean snow depth. For grid cells with equal open fraction
(Figure 10a; x axis), average snow depth (y axis) increases with mean‐squared distance to the canopy edge
(color scale). Since SDCEOF reflects typical gap size (section 4.4 and Table 2), the above finding suggests that
for any given canopy cover fraction, mean snow depth is higher when the open fraction is concentrated in a
few large gaps, and lower when the open fraction is the result of many fragmented small gaps.

The standard deviation of snow depth within a grid cell (STDHS) quantifies overall subgrid variability. To
quantify the level of heterogeneity of the canopy cover we considered the standard deviation of DCE within
a grid cell (STDDCE) and found remarkably high correlations between STDHS and STDDCE (Table 3), parti-
cularly at GrandMesa and in the Engadine. Correlations were generally stronger for coarser grid resolutions,
where subgrid variability is more relevant. A compilation of data from the first flight at all sites and for dif-
ferent spatial grid resolutions is available in Figures 11a and 11b.

An alternative way of characterizing canopy gap size distribution is to assess the ratio of large gaps relative to
the total open fraction (D1F/OF), and the ratio of large tree clusters relative to the total canopy fraction
(D5F/CF). In the parameter space defined by these two fractions, the standard deviation of snow depth
(STDHS) features a very distinct distribution (Figure 11c). The distribution suggests that the largest snow

Table 3
Correlation Coefficients (Pearson's R) Between the Grid‐Cell‐Level Snow and Canopy Variables Mentioned in section 5.3, for All Sites and Grid‐Cell Resolutions

Correlated
variables

Engadine Davos Grand Mesa

20 m 50 m 100 m 200 m 20 m 50 m 100 m 200 m 20 m 50 m 100 m 200 m

nHSF1–OF 0.84 0.91 0.94 0.96 0.64 0.63 0.50 0.17 0.77 0.86 0.90 0.92

nHSF2–OF 0.77 0.89 0.94 0.96 0.70 0.76 0.80 0.90 0.80 0.87 0.90 0.93

nHSF1–SDCEOF 0.76 0.79 0.82 0.78 0.47 0.34 0.22 −0.10 0.81 0.90 0.92 0.98

nHSF2–SDCEOF 0.70 0.73 0.79 0.72 0.57 0.52 0.58 0.72 0.84 0.91 0.93 0.98

nHSF1–CHCF −0.59 −0.69 −0.80 −0.93 −0.06 0.06 0.10 0.10 −0.39 −0.24 −0.13 0.28

nHSF2–CHCF −0.54 −0.66 −0.78 −0.92 0.05 0.22 0.40 0.70 −0.41 −0.26 −0.16 0.27

STDHS,F1–STDDCE 0.43 0.60 0.81 0.89 0.17 0.36 0.63 0.83 0.52 0.66 0.69 0.76

STDHS,F2–STDDCE 0.35 0.55 0.77 0.88 0.00 0.00 0.14 0.03 0.61 0.76 0.83 0.95

Subscripts F1 and F2 refer to the two flights, the prefix “n” to normalized variables.

Figure 10. Relationship between open fraction (OF), normalized grid‐cell average snow depth (nHS), and mean square
distance to canopy edge (SDCE) illustrated (a) as scatterplot and (b) as interpolated surface. This example is based on
data from the 16 February flight at Grand Mesa, 50‐m grid‐cell resolution.
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depth variability is found in grid cells which include a mixture of both large gaps and dense canopy clusters,
while the snow depth standard deviation is generally smaller if one or both of the extreme DCE classes (D1
and D5) is either prevalent or completely absent.

5. Discussion
5.1. Evaluation of Lidar‐Derived Snow Depth Data Sets Within Forest Stands

At the pixel level, discrepancies betweenmanual validation data and lidar‐based snow depthmaps identified
at our sites were comparable to or smaller than what has been reported in previous studies on the perfor-
mance of lidar in forests (Figure 4; Currier et al., 2019; Harpold, Gou et al., 2014; Hopkinson et al., 2004;
Tinkham et al., 2014). Yet to our knowledge, this is the first study to evaluate mean and standard deviation
of ALS‐derived snow depth over forest plots, representing the grid‐cell scale. As such, it approaches the vali-
dation from a novel perspective, focusing on the capability of ALS to capture spatial snow depth distributions
in forest stands in general and around trees in particular. We acknowledge the potential error sources inher-
ent to within‐stand study sites (i.e., inaccuracies in the in situ data, misclassification errors, understory vege-
tation (Hopkinson et al., 2004; Hopkinson et al., 2012; Tinkham et al., 2014)), but demonstrated that these do
not hinder a satisfactory representation of snow distribution patterns and their position relative to the
canopy, both for under‐ and outside‐canopy pixels (Figure 5). The minor impact of using two different sum-
mer scans, potentially confounded by the growth or decay of understory in between summer scans
(Figure 4), further indicated that these patterns are comparably robust and insensitive to errors even at
the scale of individual pixels. However, in accordance with observations by Tinkham et al. (2014) high‐
resolution (1 m) lidar data were required to resolve the observed spatial variability.

Based on these results, we could infer that both forest snow spatial patterns and distribution characteristics
were reliably resolved in the ALS data sets. Demonstrating that ALS data sets can capture both between‐ and
within‐grid‐cell variability was key to justifying the use of these data sets in the framework of a detailed for-
est snow variability analysis as presented in sections 5.2 and 4.3, especially at aggregated spatial scales. These
findings further indicate that snow depth data sets obtained from airborne lidar can provide valuable valida-
tion data for testing forest snowmodels across larger spatial scales, a need identified in the forest snowmodel
intercomparison project SnowMIP2 (Essery et al., 2009; Rutter et al., 2009).

Evaluating gap‐filling approaches was beyond the scope of this study and unfeasible, as only very few man-
ual validation points overlapped with areas where no ground returns could be identified. Even at the 1‐m
spatial scale, our data featured less than 10% gaps to be filled. However, Zheng et al. (2016) showed that
interpolation can cause systematic overestimation of snow depth under trees when gaps are more prevalent
(e.g., Harpold, Gou et al., 2014; Zheng et al., 2016). Interestingly, qualitative inspection of our data sets

Figure 11. (a) Scatterplot of standard deviation of snow depth (y axis) and standard deviation of distance to canopy edge (x axis) within 100‐m grid cells for the first
flight at all sites and (b) within grid cells of different spatial grid resolutions for the Grand Mesa site. (c) Interpolated surface showing the dependence of standard
deviation of snow depth (STDHS) on large gap fraction relative to total open fraction (D1F/OF) and on large canopy cluster fraction relative to total canopy fraction
(D5F/CF) for the Grand Mesa site.
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indicated an increased occurrence of data gaps under dense spruce trees, the lower branches of which are
often buried in the snow, supporting that accuracy may be species‐dependent, as suggested by Hopkinson
et al. (2004) and Tinkham et al. (2014). Steeper terrain slopes also appeared to be associated with larger data
gaps. Results from this study may hence not be applicable to forests on steep slopes, and more research
efforts are needed to evaluate the accuracy of lidar‐based snow maps in forested, complex terrain.

The validation strategy deployed in this study did not allow us to assess the quality of the differential snow
depth grids. Obviously, existing snow depth biases, albeit small, imply that the absolute magnitude of snow
depth changes across the entire domain should be interpreted with caution. Nevertheless, the relative spatial
patterns seen in the differential snow depth data appeared to be realistic from a process perspective; they
reflect nonuniform accumulation, that is, resulting from snow interception by the canopy (e.g., Moeser,
Stähli, et al., 2016), and enhanced snowmelt along Sun‐exposed canopy edges (e.g., Veatch et al., 2009).
Our confidence in the spatial patterns captured by the differential snow depth data was further increased
by the remarkable representation of snowmobile tracks in an area adjacent to the GrandMesa study sites (cf.
Figure S6 in the supporting information). While not a major focus of this study, our results suggest that ALS‐
based differential snow depth data can be leveraged to gain new insights on snow accumulation and melt
patterns in forest stands (see also Currier & Lundquist, 2018).

5.2. Canopy‐Structure To Snow‐Distribution Relationships in the Context of Experimental Studies
and Forest Snow Modeling

Thanks to the spatial extent and coverage provided by today's ALS technology, co‐located small‐scale spatial
snow and canopy distribution patterns within forest stands could be explored based on high‐resolution, spa-
tially complete data sets. Our findings corroborate the common observation that canopy gaps host more
snow than under‐canopy areas (Figure 6a) reported in many plot‐scale studies based on high‐resolution
point measurements (e.g., Dickerson‐Lange et al., 2015; Faria et al., 2000; Musselman et al., 2008) or terres-
trial laser scans (Revuelto et al., 2015). But by leveraging the assets of the lidar‐based data sets, we were able
to assess the effects of small‐scale snow distribution patterns across larger areas, and evaluate their impact at
aggregated spatial scales, which had previously been hindered by the limitations inherent to deriving aver-
age snow depth estimates from point measurements (López‐Moreno et al., 2011; Watson et al., 2006). Our
analysis therefore complements the large body of literature concerned with snow variability within forest
stands based on in situ data (cf. reviews by Clark et al., 2011; Lundquist et al., 2013; Varhola et al., 2010).
Furthering work by Trujillo et al. (2007, 2009), who related the scaling behavior of within‐stand snow depth
fields to the scaling properties of the vegetation, we additionally assessed how these relationships could be
used to describe grid‐cell scale average snow depth and within‐cell variability.

Repeated data acquisition captured an individual precipitation event at Grand Mesa and a 10‐day snowmelt
period at the Swiss sites. Observed links between snow distribution dynamics and canopy structure agreed
well with prior studies concerned with accumulation (e.g., Dickerson‐Lange et al., 2017; Moeser, Stähli,
et al., 2016) and melt processes (López‐Moreno & Latron, 2008; Musselman et al., 2012; Veatch et al.,
2009). However, interception, unloading, wind‐driven redistribution of snow, enhancement of longwave,
and transmission of shortwave radiation all evolve and vary throughout the season and with meteorological
conditions. We acknowledge that a targeted analysis at the level of individual processes would require per-
iodic acquisitions at high temporal resolution. Emerging cheaper and flexible UAV‐borne lidar systems (e.g.,
Almeida et al., 2019) however will likely facilitate more frequent surveys in the near future and help over-
come limitations given by the small number of flights in our study.

The framework to characterize spatial arrangement of the canopy based on DCE offers a novel and contin-
uous variable, applicable to both canopy and open pixels based on a simple, computationally efficient algo-
rithm (available in the supporting information). While existing studies have attempted to relate snow depth
to metrics such as tree size and spacing (Jost et al., 2007; Trujillo et al., 2007, 2009), or the distance from the
stem (Faria et al., 2000; Musselman et al., 2008; Revuelto et al., 2015), highlighting the relevance of the
canopy geometry, most canopy descriptors are applied to characterize either canopy pixels (e.g., the penetra-
tion fraction introduced by Zheng et al. (2016)) or the gap fraction within a forest stand (e.g., the total open
area introduced by Moeser et al. (2015)). Alternatively, simple categorizations based on tree species (Faria
et al., 2000) or discriminating between under‐canopy and near‐canopy pixels (Broxton et al., 2015) have been
used, while Currier and Lundquist (2018) suggested a more detailed classification including canopy edges of
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varying orientation, but focusing on larger‐scale forest‐structural features. Our approach builds upon these
concepts, but enables additional flexibility, as it can be extended to directional variables, aggregated to any
grid scale, and used to define canopy categories. As such, it is particularly suited to quantify within‐stand,
small‐scale canopy heterogeneities, where different DCE‐based variables could potentially be applied to
describe individual processes (e.g., nondirectional variables for interception, directional variables for
radiative transfer). Moreover, as DCE is evaluated from a binary canopy raster, it does not require canopy
height information. Its applicability is therefore not limited to detailed lidar data, but extends to widely
available aerial imagery, which implies that DCE‐based canopy structure metrics can potentially be
derived at near‐global scale. On a standard personal computer, the DCE algorithm requires only about 3‐s
calculation time per km2 grid for a canopy raster with a resolution of 1 m.

Many investigations of canopy‐snow relationships, often in conjunction with topographic variables, have
aimed to inform statistical modeling approaches (e.g., Tennant et al., 2017; Varhola et al., 2010; Zheng
et al., 2016). However, we believe that canopy parameters correlated to snow depth across sites and at multi-
ple points in time are also useful in view of upscaling physically based models. The consistent relationship
between DCE‐class specific snow depth averages within each grid cell (Figure 9) suggests a tiling approach
based on these canopy categories as a possible implementation of subgrid heterogeneity within forest stands.
This finding seconds model development efforts such as presented by Ellis et al. (2013) and Sun et al. (2018),
who demonstrated how enhancing models to include the microclimates typical of forest gaps impacts snow
accumulation, snowmelt timing, and runoff.

Moreover, the links between DCE‐based metrics, grid‐cell average, and standard deviation of snow depth
(Figures 10 and 11) indicate that a PDF approach (Clark et al., 2011; Liston, 2004; Luce & Tarboton, 2004)
may provide a successful alternative to account for unresolved variability. Here a canopy structure para-
meter based on DCE could be integrated into PDF functions describing specific forest architectures (e.g.,
dense versus discontinuous forest stands). To illustrate a potential application, we consider snow‐covered
fraction during the second flight in the Engadine. In Figure 12a, snow‐covered fraction is plotted against
grid‐averaged snow depth and colorized by grid‐cell standard deviation of snow depth, confirming the
important relationship between partial snow cover, average snow depth, and snow depth variability known
from previous research (e.g., Essery & Pomeroy, 2004; Luce & Tarboton, 2004). Being able to narrow down a
generalized form of the depletion curve by way of a specific variable (here STDHS) is a valuable asset of dis-
tributed models run over heterogeneous grid cells. STDHS is not a standard output of land‐surface models
that include forest‐snow processes, but as it is well correlated with the standard deviation of DCE, the former
could be substituted with the latter to arrive at a similar characterization of the depletion dynamics
(Figure 12b). Using STDDCE instead of STDHS offers the advantage of a predefined canopymetric of each grid
cell, while tracking a meaningful STDHS may be not as straightforward. Such a parameterization has, to our
knowledge, not been attempted to date, but experimental data presented by Dickerson‐Lange et al. (2015)
corroborate its potential to predict fractional snow cover within forest stands.

Figure 12. Snow‐covered fraction (SCF; y axis) of 50‐mgrid cells at the Engadine site on 31March as a function of grid‐cell
average snow depth (HS). Color scales illustrate (a) snow depth standard deviation and (b) standard deviation of DCE.

10.1029/2019WR024898Water Resources Research

MAZZOTTI ET AL. 6212



Generally, strong correlations between canopy structure parameters and snow variables were observed for
the Engadine and the Grand Mesa sites, demonstrating their validity at different geographic settings.
These sites are reasonably flat, allowing snow dynamics to evolve independent of local topographic effects.
The Davos site features more complex topography, and the correlations summarized in Table 3 are weaker.
At this site, local microtopography and ground roughness (boulders, fallen logs, buried understory vegeta-
tion) may have masked canopy‐induced snow distribution patterns (Watson et al., 2006; Winkler &
Moore, 2006). Moreover, Clark et al. (2011) and Zheng et al. (2016) noted that larger‐scale topography
may even outweigh the impact of smaller‐scale forest heterogeneity on snow distribution. But more research
is required to quantify the interplay between large‐scale topography, microtopography, and canopy struc-
ture, so that we can understand their combined impact on snow distribution at the grid‐cell scale. In view
of model applications, assessing the relevance of small‐scale canopy heterogeneity is particularly interesting
for regions like the European Alps or the Pacific Northwest, where the majority of forests reside in complex,
rough terrain.

6. Conclusion

Based on high‐resolution ALS data fromNASA's 2017 SnowEx campaign at GrandMesa, CO, and an equiva-
lent data set acquired in the Eastern Swiss Alps in the same year, this study has demonstrated the capability
of an ALS system to reliably capture high‐resolution spatial snow distribution patterns within forest stands,
as well as plot‐scale snow depth averages and standard deviations. A novel, computationally efficient algo-
rithm was applied to the same data sets to derive DCE, a spatially continuous canopy metric. This DCE
metric can be aggregated to obtain meaningful nondirectional and directional canopy structure parameters
that characterize grid cells of watershed and regional models. This approach allowed a detailed analysis of
co‐located canopy and snow distribution data within forest stands across spatial scales ranging from 1 to
200 m, in different geographic settings and during different times of the snow season.

At the pixel level (1‐m scale), snow depth showed a very consistent relationship with DCE, with snow depth
increasing along the gradient from dense canopy to the center of large canopy gaps. This effect generally out-
weighed differences between snow across forest edges of different orientation. Directional effects, however,
appeared to become more prevalent during snowmelt. At the grid‐cell level (20–200‐m scale), average snow
depths were strongly correlated to open fraction. Moreover, a DCE‐based parameter quantifying gap size dis-
tribution accounted for differences in average snow depth between grid cells that feature the same canopy
cover fractions. DCE was further successful in describing the standard deviation of snow depth within grid
cells, particular for larger cells (≥50 m). This finding can be leveraged to describe snow depletion curves in
forested environments in terms of the structural layout of the canopy.

Our results provide new evidence that dedicated structure parameters quantifying the spatial layout of
canopy allow better representation of between‐ and within‐cell snow variability than bulk parameters such
as canopy cover fraction alone. Since these results were derived at the scale of typical grid cells in watershed
and regional land surface models, and from observational data from two continents, concepts demonstrated
here should be applicable to inform future model development. This could include large‐scale models if the
proposed DCE algorithm was applied to aerial imagery, which today is available almost globally.

Code and Data Availability

Data presented in this study are available from the WSL data repository Envidat (https://www.envidat.ch/
ui/#/metadata/als‐based‐snow‐depth‐and‐canopy‐height‐maps‐from‐flights‐in‐2017‐grisons‐ch‐and‐grand‐
mesa‐co). The DCE algorithm code can be downloaded from https://github.com/GiuliaMazzotti/DCE‐
algorithm.
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